Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-223548

ABSTRACT

Background & objectives: Focus on non-polio enteroviruses (NPEVs) causing acute flaccid paralysis (AFP) due to myelitis has increased with the containment of the poliovirus. Enterovirus-B88 (EV-B88) has been associated with the AFP cases in Bangladesh, Ghana, South Africa, Thailand and India. In India, EV-B88 infection was linked to AFP a decade ago; however, to date, no complete genome has been made available. In this study, the complete genome sequence of EV-B88 was identified and reported from two different States (Bihar and Uttar Pradesh) in India using the next-generation sequencing technique. Methods: Virus isolation was performed on the three AFP suspected cases as per the WHO-recommended protocol. Samples showing cytopathic effects in the human Rhabdocarcinoma were labelled as NPEVs. Next-generation sequencing was performed on these NPEVs to identify the aetiological agent. The contiguous sequences (contigs) generated were identified, and reference-based mapping was performed. Results: EV-B88 sequences retrieved in our study were found to be 83 per cent similar to the EV-B88 isolate from Bangladesh in 2001 (strain: BAN01-10398; Accession number: AY843306.1). Recombination analyses of these samples demonstrate recombination events with sequences from echovirus-18 and echovirus-30. Interpretation & conclusions: Recombination events in the EV-B serotypes are known, and this work reconfirms the same for EV-B88 isolates also. This study is a step in increasing the awareness about EV-B88 in India and emphasizes future studies to be conducted in the identification of other types of EV present in India.

2.
Article | IMSEAR | ID: sea-223629

ABSTRACT

Background & objectives: The pandemic caused by the SARS-CoV-2 has been a threat to humankind due to the rapid spread of infection and appearance of multiple new variants. In the present study, we report the dynamics and persistence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in asymptomatic and symptomatic COVID-19 patients by chemiluminescent assay. Methods: A total of 463 serum samples from 218 SARS-CoV-2 PCR-positive patients were collected over a period of 124 days post-onset of disease (POD). Antibody levels were measured by chemiluminescence bioanalyzer. Neutralizing antibody titres were assessed by plaque reduction neutralization test (PRNT) for SARS-CoV-2. Results: Both IgM and IgG started appearing from day five post-infection in symptomatic and asymptomatic patients. IgM antibody response peaked around day 35 POD and rapidly diminished thereafter, with the last IgM-positive sample observed at 90 days POD. IgG antibody response peaked around 45 days POD and persisted till 124 days. The chemiluminescence immunoassay (CLIA) results showed a moderate correlation (R=0.5846, P<0.001) compared with PRNT. Additional analysis indicated a neutralizing titre of 250 corresponded to 12.948 AU/ml of YHLO iFlash SARS-CoV-2 IgG units. Interpretation & conclusions: Both symptomatic and asymptomatic COVID-19 patients seem to initiate production of antibody responses from day five of onset of disease. Although the CLIA gives high sensitivity and specificity and also its binding IgG antibody titres may correlate moderately with protective immunity, our results indicate that the values of binding antibody alone may not be a perfect guide to represent virus neutralization titre during donor selection for plasma therapy. However, IgM and IgG antibody detection may help in monitoring the status of disease progression and burden in the community.

3.
Article | IMSEAR | ID: sea-223667

ABSTRACT

Background & objectives: Nipah virus (NiV) is a zoonotic paramyxovirus that causes fatal encephalitis in humans. Enzyme Linked Immunosorbent Assay (ELISA) is a safe, sensitive, specific, and affordable diagnostic tool that can be used during screening of large-scale epidemiological investigations. Development and evaluation of IgM and IgG ELISA for screening serum samples of NiV suspected cases would also help in planning public health interventions. Methods: An IgM capture (MAC) ELISA and an indirect IgG ELISA were developed using NiV antigen to detect IgM and IgG antibodies against NiV in human sera. The sensitivity, specificity, and cross- reactivity of the assays were evaluated using NiV IgM, IgG positive, negative human sera and measles, mumps, rubella, Crimean-Congo haemorrhagic fever, Kyasanur forest disease IgM, IgG positive sera, respectively. Results: The developed anti-NiV IgM and IgG ELISAs have shown specificity of 99.28 per cent and sensitivity of 100 per cent compared to reference test from Centers for Disease Control and Prevention, USA. Assays demonstrated negative predictive value of 100 per cent and positive predictive value as 90 and 93.94 per cent for anti-Nipah IgM ELISA and IgG ELISA respectively with test accuracy of 99.33 per cent. Interpretation & conclusions: Timely diagnosis of NiV is crucial for the management of cases, which could prevent further spread of infection in the community. IgM ELISA can be used as primary diagnostic tool followed by polymerase chain reaction. These assays have advantages of its applicability during outbreak investigations and surveillance activities at hospital or onsite laboratories with basic biosafety practices.

4.
Article | IMSEAR | ID: sea-223581

ABSTRACT

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS- CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin–Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription–polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per ?l. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories

5.
Article | IMSEAR | ID: sea-223579

ABSTRACT

The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.

6.
Article in English | IMSEAR | ID: sea-178729

ABSTRACT

The emergence of Zika virus (ZiV), a mosquito borne Flavivirus like dengue (DEN) and chikungunya (CHIK), in Brazil in 2014 and its spread to various countries have led to a global health emergency. Aedes aegypti is the major vector for ZiV. Fast dissemination of this virus in different geographical areas posses a major threat especially to regions where the population lacks herd immunity against the ZiV and there is abundance of Aedes mosquitoes. In this review, we focus on current global scenario, epidemiology, biology, diagnostic challenges and remedial measures for ZiVconsidering the Indian perspective.

8.
Article in English | IMSEAR | ID: sea-155330

ABSTRACT

Since the enactment of environmental protection Act in 1989 and Department of Biotechnology (DBT) guidelines to deal with genetically modified organisms, India has embarked on establishing various levels of biosafety laboratories to deal with highly infectious and pathogenic organisms. Occurrence of outbreaks due to rapidly spreading respiratory and haemorrhagic fever causing viruses has caused an urgency to create a safe laboratory environment. This has thus become a mandate, not only to protect laboratory workers, but also to protect the environment and community. In India, technology and science are progressing rapidly. Several BSL-3 [=high containment] laboratories are in the planning or execution phase, to tackle biosafety issues involved in handling highly infectious disease agents required for basic research and diagnosis. In most of the developing countries, the awareness about biocontainment has increased but planning, designing, constructing and operating BSL-3 laboratories need regular updates about the design and construction of facilities and clear definition of risk groups and their handling which should be in harmony with the latest international practices. This article describes the major steps involved in the process of construction of a BSL-3 laboratory in Indian settings, from freezing the concept of proposal to operationalization phase. The key to success of this kind of project is strong institutional commitment to biosafety norms, adequate fund availability, careful planning and designing, hiring good construction agency, monitoring by experienced consultancy agency and involvement of scientific and engineering personnel with biocontainment experience in the process.

9.
Article in English | IMSEAR | ID: sea-152138

ABSTRACT

Ticks are distributed worldwide and can harbour and transmit a range of pathogenic microorganisms that affect livestock and humans. Most tick-borne diseases are caused by tick-borne viruses. Two major tick-borne virus zoonotic diseases, Kyasanur forest disease (KFD) and Crimean–Congo haemorrhagic fever (CCHF), are notifiable in India and are associated with high mortality rates. KFD virus was first identified in 1957 in Karnataka state; the tick Haemaphysalis spinigera is the main vector. During 2012–2013, cases were reported from previously unaffected areas in Karnataka, and newer areas of Kerala and Tamil Nadu states. These reports may be the result of improved active surveillance or may reflect altered virus transmission because of environmental change. CCHF is distributed in Asia, Africa and some part of Europe; Hyalomma spp. ticks are the main vectors. The existence of CCHF in India was first confirmed in 2011 in Gujarat state. In 2013, a non-nosocomial CCHF outbreak in Amreli district, as well as positive tick, animal and human samples in various areas of Gujarat state, suggested that the virus is widespread in Gujarat state, India. The emergence of KFD and CCHF in various Indian states emphasizes the need for nationwide surveillance among animals and humans. There is a need for improved diagnostic facilities, more containment laboratories, better public awareness, and implementation of thorough tick control in affected areas during epidemics.

11.
Article in English | IMSEAR | ID: sea-149481

ABSTRACT

Background & objectives: Pipistrellus ceylonicus bat species is widely distributed in South Asia, with additional populations recorded in China and Southeast Asia. Bats are the natural reservoir hosts for a number of emerging zoonotic diseases. Attempts to isolate bat-borne viruses in various terrestrial mammalian cell lines have sometimes been unsuccessful. The bat cell lines are useful in isolation and propagation of many of the viruses harboured by bats. New stable bat cell lines are needed to help such investigations and to assist in the study of bat immunology and virus-host interactions. In this study we made an attempt to develop a cell line from P. ceylonicus bats. Methods: An effort was made to establish cell line from embryo of P. ceylonicus species of bat after seeding to Dulbecco’s modified eagle medium (DMEM) supplemented with 10 per cent foetal bovine serum; a primary cell line was established and designated as NIV-BtEPC. Mitochondrial DNA profile analysis was done using cyt-b and ND-1 gene sequences from the cell line. Phylogenetic tree was constructed using neighbour-joining algorithm for cyt-b and ND-1 genes with 1000-bootstrap replicates. Results: NIV-BtEPC cell line was susceptible to Chandipura (CHPV) and novel adenovirus (BtAdv-RLM) isolated from Rousettus leschenaulti from India but did not support multiplication of a number of Bunyaviruses, Alphaviruses and Flavivirus. This might be useful for isolation of a range of viruses and investigation of unknown aetiological agents. Interpretation & conclusions: In this study, a new bat cell line was developed from P. ceylonicus. This cell line was successfully tested for the susceptibility to Chandipura and BtAdv-RLM virus isolated from bats. The approach developed and optimised in this study may be applicable to the other species of bats and this established cell line can be used to facilitate virus isolation and basic research into virus-host interaction.

SELECTION OF CITATIONS
SEARCH DETAIL